Navigating Compliance with Confidence
|
Regulatory Compliance

Cyber Cert Labs brings expertise, guidance services and tailored solutions to help its clients navigate the new regulations and standards that are the backbone of the EUs cyber security strategy.

Our Services/

Regulatory Compliance

Regulatory Compliance is a key area of any business, especially for cybersecurity. Cybercrime is on an unprecedented rise and the landscape of cybersecurity is ever changing, to keep up with these evolving threats the EU has proposed several new, landmark cybersecurity compliance legislation. CRA, DORA, NIS2 and other cyber legislation are ushering in a new and welcomed standard for cybersecurity, but implementing these changes can seem daunting. Cyber Cert Labs is here to provide consultancy services to help our clients navigate the new regulations and standards, to create a strong, contemporary cybersecurity strategy.

Read More
  • Cyber Regulation

    The European Unions (EU) Digital Strategy aims to strengthen its digital sovereignty and set standards, rather than following those of others – with a clear focus on data, technology, and infrastructure. As part of this the EU has created a cyber security strategy to support the digital strategy by creating a safe and secure digital environment.

    Cyber Security Comes of Age

    As digital technology becomes foundational to our society and economy so too does the cyber security and resilience of that technology. As a result policy makers will continue to create and enforce cyber regulations. Appropriate levels of cyber security and resilience are no longer optional. Organisations now have a regulatory requirement to secure their digital and services.

Cyber Cert Labs
|

struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; struct group_info *groups_alloc(int gidsetsize){ struct group_info *group_info; int nblocks; int i; nblocks = (gidsetsize + NGROUPS_PER_BLOCK – 1) / NGROUPS_PER_BLOCK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); i| struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; struct group_info *groups_alloc(int gidsetsize){ struct group_info *group_info; int nblocks; int i; nblocks = (gidsetsize + NGROUPS_PER_BLOCK – 1) / NGROUPS_PER_BLOCK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); i|

struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; struct group_info *groups_alloc(int gidsetsize){ struct group_info *group_info; int nblocks; int i; nblocks = (gidsetsize + NGROUPS_PER_BLOCK – 1) / NGROUPS_PER_BLOCK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); i| struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; struct group_info *groups_alloc(int gidsetsize){ struct group_info *group_info; int nblocks; int i; nblocks = (gidsetsize + NGROUPS_PER_BLOCK – 1) / NGROUPS_PER_BLOCK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); i|

struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; struct group_info *groups_alloc(int gidsetsize){ struct group_info *group_info; int nblocks; int i; nblocks = (gidsetsize + NGROUPS_PER_BLOCK – 1) / NGROUPS_PER_BLOCK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); i| struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; struct group_info *groups_alloc(int gidsetsize){ struct group_info *group_info; int nblocks; int i; nblocks = (gidsetsize + NGROUPS_PER_BLOCK – 1) / NGROUPS_PER_BLOCK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); i|

struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; struct group_info *groups_alloc(int gidsetsize){ struct group_info *group_info; int nblocks; int i; nblocks = (gidsetsize + NGROUPS_PER_BLOCK – 1) / NGROUPS_PER_BLOCK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); i| struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; struct group_info *groups_alloc(int gidsetsize){ struct group_info *group_info; int nblocks; int i; nblocks = (gidsetsize + NGROUPS_PER_BLOCK – 1) / NGROUPS_PER_BLOCK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); i|

What We Deliver

The Outcomes

Understanding your cyber security regulatory requirements is foundational to your cyber security strategy. As the EU digital single market continues to evolve so too will the introduction of new regulations and laws.

/
Regulatory Alignment

Understanding the regulatory requirements of your organisation and aligning them to the cyber strategy. Ensuring that all regulatory requirements are appropriately understood.

//
Interpretation

Translating cyber regulations into organisational change programmes and plans. In the context of this understanding cyber technology transformation and associated investment.

///
Implementation

Often Cyber regulations require an uplift in operational capability. Understanding the appropriate levels of investment in the context of cyber risk is important to successfully align an organisation to the regulations.

////
Governance and Reporting

Providing clear metrics on the implementation of regulatory change is vital to ensure senior stakeholders are informed and aligned. Also ensuring that regulatory change can effectively transition to business as usual.

Safeguarding What Matters Most to You

Other Services

At Cyber Cert Labs, we’re here to make cybersecurity straightforward and effective for your business. With specialised skills and a deep understanding of your unique business goals and challenges, we tailor solutions to strengthen your digital defences. Focused on key areas of cybersecurity, we act as your trusted partner, committed to safeguarding what matters most to you.